Fetal Cardiology

Fetuses have become our youngest cardiology patients

- Timeline for diagnosis and management of heart disorders has shifted to early in gestation
- As early as 12-14 weeks gestation heart defects can be detected
- Improved prenatal diagnostic screening and imaging
- Improved management of fetal heart and other disorders during pregnancy and at birth
- Fetal cardiac function and cardiovascular stability play an important role in fetal wellness
- Fetal circulation different from post-natal circulation
- Structural defects may progress in utero

Prenatal Screening

NIPT (Noninvasive Prenatal Testing)

- Screens for genetic conditions
 - 80% of rare diseases are genetic
- Maternal blood sample
 - No risk of miscarriage
 - Fetal genetic material – cfDNA
- Current NIPT screening includes:
 - Trisomy 21, Trisomy 18, Trisomy 13
 - Turner’s syndrome
 - 22q11.2 deletion, 1p36 deletion

Invasive Prenatal Testing

- Indicated when high suspicion
- Chorionic Villus Sampling (CVS)
- Amniocentesis
- Percutaneous Umbilical Blood Sampling (PUBS)
- Both with complete chromosome analysis and FISH analysis
- Risk of miscarriage or preterm labor and delivery
Rationale for Prenatal Cardiac Screening

The Numbers
- Incidence of all birth defects is 3-5% of all live births. In addition, birth defects and chromosomal disorders result in a high percent of early miscarriages.
- Up to 50% of all conceptions, including 25% that are known pregnancies, end in a miscarriage.
- Congenital heart defects (CHD) are the most prevalent birth defect in newborns.
- CHD causes 20-30% of neonatal deaths.
- Up to 40% of all CHD are major heart defects.
- Up to 20-30% may have other anomalies.

Critical Congenital Heart Disease

Critical congenital heart disease (CCHD) is defined as potentially life-threatening heart defects that require either surgical or catheter intervention in the first year of life.
- Includes heart defects that cause hypoxemia (ie, HLHS, TOF, TAPVR, d-TGA, truncus arteriosus, pulmonary or tricuspid atresia).
- Also includes other significant heart defects that sometimes but less consistently cause hypoxemia (ie, coarctation, IAA, single ventricle, Ebstein anomaly and DORV).

Diagnosis of CCHD

Newborn physical exams in the nursery fail to detect more than 40% of CCHD.
- Newborns appear healthy while the ductus arteriosus remains open.
- No murmur or visible cyanosis is present.
- Need 3-5 grams of desaturated hemoglobin.
- Dark pigmented skin makes cyanosis detection difficult.
- Many newborns are roaming in with mothers so less observation by health care providers.
- Early hospital discharges.

Rationale for Prenatal Cardiac Screening

More Numbers
- Incidence of a congenital heart defect (CHD) is about 1 in 120 live births (0.8%).
- 4.25 million live births in the US each year.
- 0.8% or 34,000 newborns will have CHD.
 - 40% or 13,600 will have at least significant CHD.
 - 25% or 8,500 will have critical CHD (CCHD).
 - This is the subset of newborns where early diagnosis is crucial in reducing morbidity and mortality. Each year a substantial number of babies are discharged home from the nursery with undiagnosed CCHD.

Why screen for CCHD?
- Prior to the initiation of Pulse Oximetry Screening (POxS), 30% or about 2,500 of the 8,500 newborns with CCHD each year were missed at the time of discharge from the nursery. Even today, a significant number go undiagnosed.
- Thus the need for improved prenatal detection, improved newborn physical exam detection and the continuation of Pulse Oximetry Screening (POxS) of all newborns.
- For management of the newborn, prenatal diagnosis has the best chance of improving morbidity and mortality from CCHD.

Critical Congenital Heart Defects (CCHD) can be diagnosed in one of the following ways:

- Prenatal imaging
- Newborn physical examination
Diagnosis of CCHD

- Pulse Oximetry Screening of the newborn
- At time of presentation in cardiovascular collapse
- Post mortem

Best to worse times to diagnose CCHD

- Prenatal Imaging
- Newborn Physical Exam
- Newborn Pulse Oximetry Screening
- At time of Presentation in Shock
- Post Mortem

Prenatal Screening for CCHD

Fetal heart imaging

- Introduced > 30 years ago but still challenging for most OB sonographers
- Overall detection rate of CCHD remains low
 - Across the USA the mean detection rate is < 50%
 - Major tertiary center have better detections rates
 - 60 – 80%
 - Fetal echocardiography has highest detection rate but still significant CCHD is being missed
 - > 90% when performed by a Fetal / Pediatric Cardiologist

Why aren’t we better at detecting CCHD prenatally?

- Pregnancies at high-risk for CHD usually get a fetal echocardiogram which has a high sensitivity
- However, > 90% of CHD occurs in low-risk pregnancies.
- Therefore, the burden to detect CHD falls on the obstetrical ultrasound which usually has low sensitivity to detect CHD.

Prenatal detection rate of CCHD in the United States

- No uniform standards for fetal heart imaging
- In some regions of the US, obstetricians do not even do fetal anatomy scans
- And, if an anatomy scan is done, imaging of the fetal heart is usually limited and may not include the minimal 4-chamber and outflow tract views
- Adequate imaging of the fetal heart can be time consuming

Factors that influence the diagnostic capability of fetal heart imaging

- Patient’s body habitus / obesity
 - Diabetes has an increased risk for CHD
- Ultrasound attenuation
 - Tissue penetration maybe limited in some women
 - Previous C-section
- Outdated equipment
- Imaging views obtained
 - 4-chamber, Outflow tracts, 3 Vessel, Situs/IVC
 - Know the normal; abnormalities get referred for a fetal echo
Prenatal Screening for CCHD

Factors that influence the diagnostic capability of fetal heart imaging (continued)

- Time of gestation
 - Ideal time is between 18 – 22 weeks gestation
 - Prior to this time, fetal heart is small and there is increased fetal motion
 - After this time, bones absorb ultrasound and shadowing effects imaging
- Experience of the OB ultrasonographer
 - Insufficient OB training in congenital heart disease
 - Do not need to know all heart defects but must recognize an abnormal
 - The more you do, the better you are

Prenatal Screening for CCHD

Obstetrical fetal anatomy ultrasound scans at 18-22 weeks gestation should include the following:

- Four chamber view of the fetal heart
- Outflow tracts of right and left ventricles
- Three vessel tracts (pulmonary artery, aorta and superior vena cava)
- Situs and inferior vena cava

Prenatal Diagnosis of CCHD

The Fetal Echocardiogram

- Directed, comprehensive anatomic and hemodynamic assessment of the fetal heart and cardiovascular system usually performed by a Pediatric / Fetal Cardiologist or MFM Specialist with expertise in congenital heart disease.
- Sensitivity for detecting all CHD including small septal defects and minor valve abnormalities is about 43%
- For major CHD the sensitivity is 90% with a specificity of 99.9%
- Fetal echocardiography is presently indicated in high or at risk pregnancies but only about 10% of CHD occurs in this subset of pregnancies

Prenatal Screening for CCHD

Factors that influence the diagnostic capability of fetal heart imaging (continued)

- Type of heart defect
 - 50% detection rate
 - Hypoplastic left heart syndrome (HLHS)
 - Ebstein’s malformation of the tricuspid valve
 - Single ventricle defects
 - 20% detection rate
 - Transposition of great arteries (TGA)
 - Tetralogy of Fallot (TOF)
 - Transposition arterial
 - 10% detection rate
 - Total anomalous pulmonary venous return (TAPVR)
 - Aortic arch anomalies such as coarctation

Prenatal Diagnosis of CCHD

Normal fetal echocardiogram

Video

Courtesy of Dennis Wood, RDMS
Prenatal Diagnosis of CCHD

Normal fetal echocardiogram – Color Doppler

Video

Indications

Prenatal Congenital Heart Defects

New Jersey Critical

Indications

Normal

Maternal

Family

Nonimmune

Abnormalities

Association

Prenatal

Twin

Absent

Single

Factors

History

Factors

3rd degree

Screening

Disorders, – Rubella

– Aneuploidy

Aneuploidy

Screening

– Patent ductus arteriosus – volume overload on fetal heart

– Monochorionic twinning with

– Twin to twin transfusion syndrome (TTTS)

– Nonimmune hydrops fetalis and effusions

Indications for a directed fetal echocardiogram

Maternal Factors

– Diabetes mellitus

– Phenylketonuria

– Autoimmune disease and autoantibody positivity

– Lupus – complete heart block and cardiomyopathies

– Medication exposure

– Anticonvulsants

– Lithium – especially Ebstein’s malformation

– ACE inhibitors

– Warfarin and other Coumadin derivatives

– Retinoic acid

– NSAIDs

Indications for a directed fetal echocardiogram

Maternal Factors (continued)

– Infection – Rubella

– Assisted reproductive technology – IVF

Family History

– Maternal heart disease: 3–7% risk of CHD recurrence

– Paternal heart disease: 2–3% risk (greater if BAV/AS)

– AFFECTED SIBLINGS: 2–6% risk of CHD recurrence

– 2nd and 3rd degree relatives low risk of CHD recurrence

– Diseases, disorders or syndromes with Mendelian inheritance and associated cardiac phenotypes

– 22q11 deletion, Alagille syndrome or Williams syndrome

Indications for a directed fetal echocardiogram

Fetal Factors

– Abnormalities of umbilical cord and venous system

– Single umbilical artery – 3.9% risk of CHD

– Absent ductus venosus – volume overload on fetal heart

– Monochorionic twinning with

– Twin to twin transfusion syndrome (TTTS)

– Nonimmune hydrops fetalis and effusions

Recommended Reading

Indications for a directed fetal echocardiogram

Obstetrical screening limitations

– Remember that 90% of CHD occurs in low-risk pregnancies with none of the above noted indications for a directed fetal echocardiogram

– Even though up to 99% of women in the United States giving birth to babies with serious CHD had obstetrical ultrasounds only about 30% of the fetuses were identified prenatally

– Need for improving detection on obstetrical ultrasounds

– ‘Need for routine fetal echo in all pregnancies

Indications for a directed fetal echocardiogram

Recommended Reading

Indications for a directed fetal echocardiogram

Obstetrical screening limitations

– Remember that 90% of CHD occurs in low-risk pregnancies with none of the above noted indications for a directed fetal echocardiogram

– Even though up to 99% of women in the United States giving birth to babies with serious CHD had obstetrical ultrasounds only about 30% of the fetuses were identified prenatally

– Need for improving detection on obstetrical ultrasounds

– ‘Need for routine fetal echo in all pregnancies

Recommended Reading
Prenatal Diagnosis of CCHD

Hypoplastic left heart syndrome (HLHS)

Four chamber view

Short axis view

www.cdc.gov

www.emedicine.medscape.com

Prenatal Diagnosis of CCHD

Tetralogy of Fallot (TOF)

www.cdc.gov

Prenatal Diagnosis of CCHD

d-Transposition of the Great Arteries (d-TGA)

LV RA LA A0

Prenatal Diagnosis of CCHD

Total Anomalous Pulmonary Venous Return (TAPVR) and Coarctation of the Aorta

Both may present with RV>LV size disproportion but the defects are difficult to image

Prenatal Diagnosis of CCHD

Benefits of prenatal detection of Major CHD

- Assess for possible chromosome abnormalities (up to 21%) or other malformations associated with major CHD
- Plan for birth and early treatment
- Site of delivery
- CHOP Special Delivery Unit
- Decreased morbidity and mortality compared to babies with unrecognized CCHD at time of delivery
- Education of parents about baby's heart defect and treatment plan in a controlled setting
- Address any psychological issues early
- Option for pregnancy termination if desired

Prenatal Diagnosis of CCHD

Impact of prenatal diagnosis of CHD

- Children's Hospital of NY-Presbyterian, Columbia University Medical Center
 - 2004-2009 total of 993 infants with major CHD of which 68.3% had prenatal diagnosis
 - Increased odds of scheduled delivery
 - Increased odds of induction of labor
 - No change in C-section rate
 - Increased odds of delivery at <39 weeks
 - No association with preoperative or predischarge mortality

Prenatal Diagnosis of CCHD

Future of prenatal screening for CHD
- Improved ultrasound imaging quality and techniques
- MRI imaging of the fetal heart
- Genetic basis of congenital heart defects and other abnormalities
- Cell-free fetal DNA analysis and other genetic markers of congenital heart disease

Conclusions
- Prenatal diagnosis of CCHD is the optimal time
- Present day OB ultrasound evaluation of the fetal heart detects only <50% of CCHD
- 90% of CCHD occurs in low-risk pregnancies
- OB ultrasound imaging of the fetal heart must include 4-chamber, outflow tracts, 3-vessel view and situs with identification of IVC
- Until we have better prenatal screening for CHD, we must improve newborn screening, continue POxS and always be vigilant for undiagnosed CHD in all infants