MARIJUANA & THE EFFECTS ON THE BRAIN
Sheryl Ryan, MD
Professor of Pediatrics
Chief, Division of Adolescent Medicine, Penn State Health Hershey Medical Center

DISCLOSURES

• I have no relevant financial relationships with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services discussed in this CME activity.

• I do not intend to discuss any unapproved or investigative use of a commercial product in my presentation.
OBJECTIVES

• Provide brief background on biology of marijuana and the endocannabinoid system

• Describe the adverse short- and long-term health and developmental effects of marijuana on children and adolescents, focusing on brain development
RATES OF MARIJUANA AND TOBACCO USE

<table>
<thead>
<tr>
<th>NSDUH Stats</th>
<th>2015</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Past month all tobacco products use aged 12 or older</td>
<td>23.9%</td>
<td>23.5%</td>
</tr>
<tr>
<td>Cigarettes</td>
<td>19.4%</td>
<td>19.1%</td>
</tr>
<tr>
<td>Smokeless tobacco</td>
<td>3.4%</td>
<td>3.3%</td>
</tr>
<tr>
<td>Cigars</td>
<td>4.7%</td>
<td>4.6%</td>
</tr>
<tr>
<td>Pipe tobacco</td>
<td>0.8%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Marijuana Use in past month aged 12 or older</td>
<td>8.3%</td>
<td>8.9%</td>
</tr>
<tr>
<td>Past month all tobacco products use aged 12-17</td>
<td>6.0%</td>
<td>5.3%</td>
</tr>
<tr>
<td>Cigarettes</td>
<td>4.2%</td>
<td>3.4%</td>
</tr>
<tr>
<td>Smokeless tobacco</td>
<td>1.5%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Cigars</td>
<td>2.1%</td>
<td>1.8%</td>
</tr>
<tr>
<td>Pipe tobacco</td>
<td>0.3%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Marijuana Use in past month aged 12-17</td>
<td>7%</td>
<td>6.5%</td>
</tr>
</tbody>
</table>

MARIJUANA BIOLOGY

- The cannabis plant: contains more than 400 biologically active substances
- More than 100 types of cannabinoids
- Numerous species and subspecies
 - Cannabis sativa and indica the two most common.
 - Cause a variety of psychotropic effects
- Both species have been hybridized repeatedly
MARIJUANA BIOLOGY

• Delta 9 –Tetrahydrocannabinol - THC
 • The primary psychoactive cannabinoid in the marijuana plant.
• Selective breeding of marijuana species has resulted in higher concentrations of THC in plant products
• From 1995 to 2013 - ~4% to 17% THC
 • Now > 20%
• New ways of using (dabbing, volatilizing oils) create even higher concentrations
 • More potent psychotropic effects as well as increased risk of adverse effects

CANNABIDIOL (CBD)

• CBD is a non-psychoactive cannabinoid.
 • Low affinity for CB receptors
 • Can interfere with endocannabinoid degradation;
 • Agonist of serotonin 5HT1A receptors → neuroprotection?
• Focus on CBD for medical effects:
 • Improved control of certain chronic neurological conditions, including intractable seizures: Epidiolex
 • Immune enhancement.
 • Cancer treatment.
• Little is known about dose-response relationships of CBD; too little may be ineffective and too much may cause adverse effects.
THE ENDOCANNABINOID SYSTEM: ECS

- Humans produce “endocannabinoids”
 - Anandamide and 2-AG (2-arachidonoylglycerol).
 - Biologically active molecules that serve a number of regulatory functions.
- Two endocannabinoid receptors: CB1 and CB2.
 - CB1 - in the brain and nervous system
 - CB2 - in immune system cells, wide range of somatic cells.
 - Can be detected as early as 5 weeks gestation
- THC from marijuana binds to CB receptors
 - Partial agonist with biologic activity

Cannabinoid Receptors Are Located Throughout the Brain and Regulate:

- Brain Development
- Memory and Cognition
- Motivational Systems & Reward
- Appetite
- Immunological Function
- Reproduction
- Movement Coordination
- Pain Regulation & Analgesia

Volkow NIDA 2014
ENDOCANNABINOID SYSTEM (ECS)

• Critical for early neonatal brain development
 • Role in microtubule function → axonal growth
 • Involved in orderly fetal development of neural systems
• THC crosses placental readily
 • Binds to CB receptors in brain
 • Concern that THC “highjacks” or disrupts this highly sequenced pattern of normal neuronal development
• Is this why we are seeing neurodevelopmental deficits in infants and children whose mothers used marijuana during pregnancy?

ECS – IMPORTANCE IN ADOLESCENCE

• ECS has dynamic role in brain development during adolescence
• Brain development characterized by increase in white matter, decrease in gray matter – pruning, efficiency
 • Especially in areas associated with reward, motivation and cognition
• CB1 receptor density increases in these areas during adolescence compared with adult brain
 • THC found to affect density of CB receptors, and activity of neurotransmitters
• Concern that THC disrupts “perfectly orchestrated” maturation
 • Unclear how brain maturation may be affected, trajectory of effects
 • Mostly animal studies - Unclear whether results in animal studies apply to humans
CANNABINOID MECHANISMS OF ACTION

- Cardiovascular: BP, HR, vasodilation
- Liver: lipogenesis
- GI Tract: Motility, Satiety
- Immune system: Alter IL synthesis, Neutrophil recruitment
- Pancreas: Insulin sensitivity and secretion
- Adipose Tissue: Lipid metabolism, FFA oxidation

ADVERSE EFFECTS OF CANNABINOIDS
DEVELOPMENTAL EFFECTS OF PRENATAL EXPOSURE

Neurocognitive and Behavioural Effects

<table>
<thead>
<tr>
<th>18 months</th>
<th>3–6 years</th>
<th>9–10 years</th>
<th>14–16 years</th>
<th>17–22 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased aggressive behaviour*</td>
<td>Deficits in:</td>
<td>Deficits in:</td>
<td>Deficits in:</td>
<td>Deficits in:</td>
</tr>
<tr>
<td>Attention deficits (females)*</td>
<td>• Verbal and perceptual skills†</td>
<td>• Visual reasoning†</td>
<td>• Visual-cognitive functioning†</td>
<td>• Executive functioning†</td>
</tr>
<tr>
<td></td>
<td>• Verbal reasoning†</td>
<td>• Reading*</td>
<td>• Academic achievement*</td>
<td>• Response inhibition†</td>
</tr>
<tr>
<td></td>
<td>• Visual reasoning†</td>
<td>• Spelling*</td>
<td>• Information processing speed*</td>
<td>• Visual motor coordination*</td>
</tr>
<tr>
<td></td>
<td>• Verbal and quantitative reasoning†</td>
<td>• Hyperactivity*</td>
<td>• Substance use*</td>
<td>• Smoking*</td>
</tr>
<tr>
<td></td>
<td>• Short-term memory*</td>
<td></td>
<td>• Early initiation of substance use*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hyperactivity*</td>
<td>Attention deficits‡</td>
<td></td>
<td>Delinquency*</td>
</tr>
<tr>
<td></td>
<td>Attention deficits‡</td>
<td>Impulsivity*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impulsivity*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Impaired vigilance*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*OPPS †MHPCD ‡Generation R

From: Canadian Centre on Substance Abuse: Clearing the Smoke on Cannabis
ASSOCIATED BRAIN CHANGES: ADOLESCENTS

• Effects from Prenatal Exposure
 • Increased neural activity in PFC during inhibitory control tasks (fMRI)
 • Altered neuronal functioning during visuo-spatial memory tasks
 • Disruption of dopamine and opioid neurotransmitter systems
 • Concerns about alterations in epigenetic gene regulation mechanisms
 • May explain in part why prenatal drug exposure causes long-lasting changes in behavior

• Current focus of research and concern

EFFECTS DURING ADOLESCENCE
EFFECTS WITH REGULAR USE

- Dependence in 1 in 6 teens who use regularly
 - Craving, Tolerance, Withdrawal
 - DSM V Diagnosis – Marijuana use disorder
- Chronic bronchitis and impaired respiratory function
- Increased risk of MVAs when used alone
 - 50-90% more car accidents when also used with alcohol
- Higher rates of use of alcohol, tobacco and other drugs
- Higher rates of anxiety
- Hyperemesis syndrome

LONG TERM EFFECTS – CHRONIC, HEAVY USE

- Short-term memory impairment - long lasting
- Likely permanent cognitive impairment and loss of IQ in adolescents
 - Especially when use begins at an early age and heavy use continues
- Poorer psychosocial development
- Impaired academic achievement/educational outcomes
 - Increased unemployment, lower income
- Impaired social functioning
- Unclear association with chronic respiratory diseases
- Higher rates of schizophrenia, anxiety and mood disorders, PTSD
 - Increased rates of suicidal ideation/attempts
LONG TERM EFFECTS – CHRONIC, HEAVY USE

• Short-term memory impairment that is long lasting
• Likely permanent cognitive impairment and loss of IQ in adolescents who begin use at an early age and continue heavy use into late adolescence
• Poorer psychosocial development
• Impaired academic achievement/educational outcomes
 • Increased unemployment, lower income
• Impaired social functioning
• Unclear association with chronic respiratory diseases
• Higher rates of schizophrenia, anxiety and mood disorders, PTSD
 • Increased rates of suicidal ideation/attempts

Persistent cannabis users show neuropsychological decline from childhood to midlife

Madeline H. Meierah, Avshalom Caspiabced, Antony Amblera, Honalee Harringtonbced, Renate Houbsbced, Richard S. E. Keefea, Kay McDonaldd, Aimee Wardd, Richie Poultond, and Terrie E. Moffittabced

aDuke Transdisciplinary Prevention Research Center, Center for Child and Family Policy, bDepartment of Psychology and Neuroscience, and cInstitute for Genome Sciences and Policy, Duke University, Durham, NC 27708, dDepartment of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, eSocial, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London SE5 8AF, United Kingdom; and fDunedin Multidisciplinary Health and Development Research Unit, Department of Preventive and Social Medicine, School of Medicine, University of Otago, Dunedin 9354, New Zealand

Average IQ change:

- “Never used”
 - 99.8 to 100.6
- “Mj dependent 3+ yrs”
 - 99.7 to 93.9

Source: Meier et al. PNAS, 2012

<table>
<thead>
<tr>
<th>Exposure</th>
<th># Cases</th>
<th>HR Crude</th>
<th>HR adjusted*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never used cannabis</td>
<td>47</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ever used cannabis</td>
<td>12</td>
<td>2.1 (1.1-3.8)</td>
<td>0.8 (2.2-2.9)</td>
</tr>
<tr>
<td>>50 times</td>
<td>7</td>
<td>7.4 (1.0 – 54.3)</td>
<td></td>
</tr>
</tbody>
</table>

* Adjustments for: prior personality disorders at conscription, IQ, disturbed behavior in childhood, social adjustment, risky use of alcohol, smoking, early adulthood socioeconomic position, use of other drugs, brought up in a city. The category “Ever used cannabis” includes all individuals who reported cannabis use, including those who reported “>50 times”.

Griffith-Lendering. Addiction. 108(4), 733-74D.
Manrique-Garcia. BMC Psychiatry. 12, 112.
Poorer communication across different parts of the brain

Source: Arnone D, Barrick TR, Chengappa S et al. Corpus callosum damage in heavy marijuana use: Preliminary evidence from diffusion tensor tractography and tract-based spatial statistics. Neuroimage, 2008; 41:1067-1074

NEUROIMAGING STUDIES WITH ADOLESCENTS

• fMRI Studies
 • Differences in levels of activation of hippocampus (memory) compared with controls*
 • Functional connectivity studies of frontoparietal areas of brain - disrupted neuro-circuitry during task demands**
 • Inhibitory processing studies - marijuana users had exaggerated responses to both inhibitory and non-inhibitory trials – in prefrontal and parietal regions***

• DTI (diffusion tensor imaging) studies
 • no effects on white matter integrity

• Overall – evidence of altered neural response patterns in marijuana using teens that is consistent with neurocognitive studies.

CONTINUING CHALLENGES:

• Getting the message out that marijuana is NOT benign for our adolescents and young adult populations!
• Making marijuana smoking as undesirable as cigarette smoking
• Enforcing “underage recreational marijuana use” for <21 year olds
 • Avoiding similar marketing experience of “big tobacco”
• Counseling parents about their own legal or medical use
• Supporting the need for research on adverse effects as well as efficacy of medical marijuana

TAKE-AWAY MESSAGES

• There is accumulating scientific data about the adverse effects of marijuana use for both the developing fetus, and adolescents
• These are specifically concerning about brain development, behavior and mental health disorders
• Despite this, there are high rates of use among adolescents and young adults and the perception that marijuana use is harmful is at an “all-time low”.
• The challenge of the health care providers is to counter arguments that marijuana is benign and that the benefits of legalization outweigh the risks to society.
THANK YOU!

RESOURCES

- American Academy of Pediatrics: www.aap.org/marijuana
- National Institute on Drug Abuse: www.drugabuse.gov
- Office of National Drug Control Policy: www.whitehouse.gov/ondcp
- Smart Approaches to Marijuana: http://learnaboutsam.com
- Substance Abuse and Mental Health Services Administration: www.samhsa.gov