The Resurgence of Affliction
Measles: The Current Situation

New Jersey Immunization Network
Webinar
June 2, 2011
Global Situation*

- In 2008, ~83% of the world’s children received one dose of measles-containing vaccine (MCV) by their first birthday
 - Up from 72% in 2000
- In 2008 there were an estimated 164,000 deaths due to measles
 - A 78% decrease (733,000 deaths) since 2000
 - >95% of deaths in low-income countries with weak health infrastructures
 - Mainly seen in children <5 years of age
- All regions, except one (South-East Asia), have achieved a 90% reduction in measles mortality from 2000-2010
 - Two years ahead of UN goals
 - South-East Asia experienced a 46% decrease in measles mortality
 - Delayed implementation of large scale vaccination campaign in India
 - 75% of measles mortality in children in India
- In jeopardy due to decreased financial and political commitment
 - Estimated 1.7 million measles-associated deaths between 2010-13

*WHO estimates. See http://www.who.int
Measles global annual reported cases and MCV coverage, 1980-2009

Source: WHO/IVB database, 2010
93 WHO Member States. Data as of September 2010

Date of slide: 08 September 2010
United States

- **Prevaccine era (pre-1963)**
 - ~500,000 cases annually
 - In reality, ~4 million infected/year
 - ~500 deaths
 - ~150,000 with respiratory complications
 - ~48,000 hospitalizations
 - 7,000 seizure episodes
 - 4,000 cases of encephalitis
 - Up to 25% of people with measles-associated encephalitis were permanently brain damaged or deaf
United States (continued)

- Since 1963 (vaccine licensure)
 - 99% decrease in measles incidence
 - Most pronounced decrease seen with enactment of laws requiring vaccination for school entry in early 1980’s
 - From 1985 – 1992
 - Children with exemptions were 35x more likely to contract measles than nonexempt children*

- 1989-1991 resurgence
 - Estimated 55,000 measles cases with >130 deaths
 - Controlled by:
 - Increased rate of immunization
 - Institution of 2-dose regimen in children

United States (continued)

- Measles elimination (i.e., interruption of endemic measles transmission) was declared in the US in 2000
- Median of 56 cases from 2001 – 2008*
 - Range: 37 - 140
 - Associated with imported infection
- January – May 20, 2011*
 - 118 cases reported from 23 states and New York City
 - More than reported for 2010
 - Highest number reported for this period since 1996

Measles (Rubeola)

Virology

- Genus: *Morbillivirus*
- Family: Paramyxoviridae
- Canine distemper and rinderpest viruses
- Spherical, enveloped, single-stranded RNA virus
 - 6 identified structural proteins
 - 3 complexed with RNA to form nucleocapsid P, L, and N proteins
 - 3 complexed with viral envelope (F, H, and M proteins)

http://biowiki.org/twiki/pub/Fall09/MeaslesVirus/Measles_virus.JPG
Measles
Virology

Genetic variety

- WHO recognizes 23 genotypes
 - phylogenetic analysis of the N gene
- Biologic significance unknown
- Allows monitoring transmission pathways
- Immune response generated through immunization protects vs all strains
 - Molecular sequencing can distinguish between wild-type and vaccine-virus
Measles
Pathophysiology

- Infects epithelial, reticuloendothelial, and white blood cells
 - Multiple organ systems
 - Multinucleated giant cells found throughout the respiratory and GI tracts and in most lymphoid tissue on autopsy
 - Decline in CD4 cells
 - Prior to rash onset and lasting up to 1 month
 - Suppression of delayed-type hypersensitivity

Perry RT, Halsey NA. The clinical significance of measles: a review. JID. 189 (Suppl 1) S4-S16. May 1, 2004
Measles
Epidemiology

- Humans are the only natural hosts
 - No animal reservoirs

- Highly contagious
 - Attack rate in susceptible household contacts: 75%-90%
 - Direct contact with infectious respiratory secretions
 - Large respiratory droplets and droplet nuclei
 - Lingers for at least 2 hours
 - Requires airborne precautions
 - Nasopharynx and conjunctiva
 - Most infectious in prodromal period
 - Before rash onset
Measles
Epidemiology

- Incubation period: 8-12 days
- Contagious period: 1-2 days before symptom onset (3-5 days before rash) to 4 days after rash appearance
 - Immunocompromised patients may demonstrate prolonged excretion of virus
- Peak incidence in temperate regions is late winter and spring
- Pre-vaccine era
 - Pre-school and young school age children
 - Few susceptibles by 20 years of age
- Primary vaccine failure (≥12 months) ~5%
 - Most infections in previously immunized children viewed as primary vaccine failures
Measles
Clinical Presentation

- **Prodrome (2-4 days)**
 - Fever (39°C–40.5°C), cough, coryza, and conjunctivitis
 - Symptoms intensify and usually peak on first day of rash
 - Appearance of Koplik spots appear 1 day prior to rash onset and last 2-3 days
 - Buccal mucosa opposite 1st molar
 - Soft palate, conjunctiva, vaginal mucosa

Perry RT, Halsey NA. The clinical significance of measles: a review. JID. 189 (Suppl 1) S4-S16. May 1, 2004
Koplik Spots

http://www.pathguy.com/sol/24924.jpg
Measles
Clinical Presentation

- Rash first appears on face and neck
 - Discrete erythematous patches (3-8 mm)
- Lesions increase and spread downwards to trunk and extremities (including palms in 25%-50%)
 - Most intense over face and trunk
 - Frequently become confluent
- Rash persists for 3-7 days
 - Desquamation may appear but not pronounced
 - Severe desquamation seen in malnourished children
- Immunocompromised patients may demonstrate an atypical presentation
 - Without rash

Perry RT, Halsey NA. The clinical significance of measles: a review. JID. 189 (Suppl 1) S4-S16. May 1, 2004
Measles
Clinical Presentation

- Common associated signs and symptoms
 - Photophobia secondary to iridocyclitis
 - Sore throat
 - Headache
 - Abdominal pain
 - Generalized mild lymphadenopathy
Measles Complications

- **At greatest risk**
 - <5 years and ≥20 years
 - Immunocompromised
 - T-cell suppression
 - Congenital or acquired T-cell deficiencies
 - 60% of all measles-associated deaths in NJ in 1990-1991 occurred in HIV-infected children*
 - Chemotherapy for cancer or steroid therapy
 - Bone marrow transplantation
 - Malnourished
 - Protein losing enteropathy, increased metabolic demand, decreased food intake
 - Vitamin A deficiencies
 - Measles infection lowers serum retinol levels
 - Crowded living conditions
 - Developing countries

Measles
Complications-Respiratory

- **Pneumonia**
 - Most common severe complication
 - Responsible for most measles-associated deaths
 - Viral
 - Measles
 - Secondary infection with adenovirus or HSV
 - Bacterial
 - *Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae* and others
 - Immunocompromised patients
 - Diffuse progressive pneumonitis
 - Most common cause of death
 - Hecht’s giant cell pneumonia

Perry RT, Halsey NA. The clinical significance of measles: a review. JID. 189 (Suppl 1) S4-S16. May 1, 2004
Measles
Complications-Respiratory

- **Otitis media**
 - Most common complication reported in US
 - 14% of children under 5 years of age

- **Laryngotracheobronchitis**
 - “measles croup”
 - 9%-32% of US children hospitalized with measles
 - 2nd most common cause of death in hospitalized US children after pneumonia
 - Secondary bacterial tracheitis, pneumonia or both
 - *S. aureus* most commonly cultured organism
Measles Complications - Neurological

- **Febrile seizures**
 - 0.3%-2.3% in children in US and UK
 - Benign, not associated with residual damage

- **Encephalitis**
 - Postinfectious encephalomyelitis (PIE)
 - 1-3/1000 infections
 - 3-10 days post rash onset
 - Highest incidence in adolescents and adults
 - ~25% case fatality rate
 - ~33% have neurological sequelae
 - Subacute sclerosing panencephalitis (SSPE)
 - Persistence of measles virus in CNS
 - Slowly progressive infection and demyelination
 - Vegetative state
 - 7-10 years post acute infection
 - 1/8.5 million cases in the US
 - Disappeared sin the US since advent of measles immunization

- **Measles inclusion body encephalitis**
 - Immunocompromised
 - Mental status changes and seizures without fever

Perry RT, Halsey NA. The clinical significance of measles: a review. JID. 189 (Suppl 1) S4-S16. May 1, 2004
Measles
Complications-GI and Ocular

Diarrhea
- Most common in people <5 years and >30 years
- 30%-70% of hospitalized patients with measles in US
- Typical onset just before rash
- Dehydration common

Blindness
- Keratitis (inflammation of the cornea)
 - Common
 - Secondary infections with viruses (adenovirus, HSV) and bacteria (*Pseudomonas* spp. and staph)
 - Scarring and blindness
- Vitamin A deficiency
- Cortical damage secondary to encephalitis

Perry RT, Halsey NA. The clinical significance of measles: a review. JID. 189 (Suppl 1) S4-S16. May 1, 2004
Measles Diagnosis

- **Serology**
 - Positive IgM for measles
 - Collect serum at first encounter with suspected measles patient
 - *30% false negatives when collected within 72 hours of rash onset*
 - Confirm with second sample collected ≥72 hours of rash onset
 - If negative and high index of suspicion remains repeat IgM study
 - Paired acute and convalescent IgG studies
 - Not appropriate for timely diagnosis
 - Serology may be difficult to interpret in those previously vaccinated or who received PEP vaccination or immunoglobulin
Measles Diagnosis

- **Isolation of measles virus**
 - Collect samples as soon as possible after rash onset
 - Isolation most successful if specimen collected from day of rash onset through 3 days post-onset
 - Throat or nasopharyngeal swabs preferred
 - Virus isolation or RT-PCR detection
 - Flocked synthetic swabs (dacron) preferred
 - Do not use cotton
 - Contain substances that inhibit enzymes in RT-PCR
 - Avoid wooden and calcium alginate swabs
 - Place swabs in 2 mL of standard commercially available viral transport media (VTM)
 - Cell culture medium can be used
 - If VTM not available use sterile isotonic solution (e.g., phosphate buffered saline)
 - Place swab in 1-3 mL in a sterile container
 - Blood collection tube with no gels/other agents or sterile urine collection container
 - Place specimen in refrigerator until transport
 - Urine sample
 - Sensitivity increased if both are sent
Measles
Treatment

- Supportive care
- No antiviral treatment
 - No controlled clinical trials evaluating ribavirin
 - Not FDA approved for treatment of measles
- Appropriate antimicrobials for secondary bacterial infections
- Vitamin A therapy
 - Developing countries
 - Therapy associated with decreased morbidity and mortality
 - United States
 - Low serum Vitamin A levels in children
 - Severe measles associated with lower Vitamin A serum concentrations
 - WHO recommends Vitamin A therapy for all children with measles regardless of country
 - Once daily for 2 days
 - 200,000 IU for children ≥12 months
 - 100,000 IU for children 6 through 11 months
 - 50,000 IU for children <6 months
Measles
Prevention-Immunization of Children

- **Two dose schedule**
 - All children
 - First dose: 12-15 months of age
 - Second dose: 4-6 years of age
 - May get 2nd dose ≥28 days after 1st dose
 - **If traveling abroad**
 - 6-12 months of age, prior to travel
 - Then follow standard schedule (see above)
Measles
Prevention-Immunization of Adults

- All adults should have proof of immunity
 - Born in US before 1957
 - Exceptions
 - Health care personnel
 - If no serologic evidence of immunity then MMR x 2
 - Interval ≥28 days
 - Serologic proof of immunity
 - Documented receipt of measles-containing vaccine
 - Two doses at appropriate age and interval
 - Physician-diagnosed disease is not acceptable
Measles
Prevention-Post Exposure Prophylaxis (PEP)

- Intramuscular immune globulin (IG) can be given up to 6 days post-exposure
 - Delay giving children MMR 5-6 months after receiving IG depending on the dose

- IVIG preparations usually contain adequate amount of measles antibodies
 - For those receiving IVIG regularly, 400mg/kg should be adequate for prophylaxis for exposures occurring within 3 weeks of receiving IVIG
The Situation
WHO’s European Region 2011

- As of May 6, 2011
 - 38 countries
 - 7028 confirmed cases of measles
 - 2632 (37%) are laboratory-confirmed
 - 3929 (60%) are clinically confirmed
 - 467 (3%) are epidemiologically confirmed
 - 29% of cases in people who never received a measles-containing vaccine (MCV)
 - 67% of cases in people who had no documentation or did not know their vaccination status
Age Distribution of Measles Cases Reported in 2011 in the WHO European Region (N=7028)

WHO Epidemiological Brief. No, 14. May 2011
Measles Incidence in 2010 and Outbreaks Between January 2010 and March 2011, WHO European Region

France: ~10,000 cases in first 4 months of 2011
360 cases of severe measles pneumonia
12 cases of encephalitis
6 measles related deaths
Number of Measles Cases per Month, Mandatory Notification
France, January 2008 – March 2011

http://www.invs.sante.fr/surveillance/rougeole/Point-rougeole_190411.pdf
The Situation
United States

- January – May 20, 2011
 - 118 cases reported in 23 states and New York City
 - 105/118 (89%) were associated with importation
 - 46/105 (44%) importations
 - 34/46 (74%) among US residents traveling abroad
 - 12 (26%) among foreign visitors
 - 40/46 (87%) were from the WHO European and South-East Asia regions
 - 47/118 (40%) were hospitalized
 - 9/47 (19%) had pneumonia
 - 105/118 (89%) were laboratory-confirmed
 - 52/105 (50%) measles virus RNA detected

Age distribution

- Range: 3 months to 68 years
 - 18 (15%) were <12 months
 - 24 (20%) were aged 1-4 years
 - 23 (19%) were 5-19 years
 - 53 (45%) were ≥20 years

The Situation
United States

Vaccination status

- 105/118 (89%) were unvaccinated
 - 39/45 (87%) of US residents aged 12 mos–19 years
 - 24/39 (62%) had a religious or personal exemption
 - 8/39 (21%) missed opportunity for vaccination
 - 35/42 (83%) of US residents aged ≥20 years
 - 6/35 (17%) declined vaccination due to philosophical objections
 - 30/33 (91%) of US residents who traveled and were vaccine-eligible
 - 1/33 (3%) received 1 of the 2 recommended doses

Three confirmed and one probable case

- Two confirmed cases are secondary to exposure to imported cases
 - France, Italy
- 21 month-old from Middlesex county
 - Unvaccinated
 - Travel to Pakistan

Since 2005

- Range confirmed and probable cases: 1-3/year

April 13 – May 13, 2011

- 12 exposure/case investigations
 - Involving hundreds of exposures

Personal communication. Vaccine Preventable Diseases Division, NJDHSS
Two lab-confirmed (IgM +) cases

- Presented with fever and rash on 4/12-13
 - Morris County ED
- Arrived via Newark Liberty Airport on 4/7
- Transmission to unvaccinated 8 month old
 - Dates of exposure: 4/7 – 4/13
 - Quarantine at home beginning 4/13
 - Both parents had serologic proof of immunity
 - Received PEP 6 days post-exposure
 - Developed rash on 4/18

Personal communication. Vaccine Preventable Diseases Division, NJDHSS
The French Connection
New Jersey, April 7 – May 12, 2011

Contact follow-up
- On flight to NJ
 - 16 passengers
- Hospital contacts from 4/12-13
 - >15 patients
 - >7 staff
- Family exposure
 - Two families
 - 7 people
 - 3 unvaccinated children (2/3 ≤12 mos)
- Restaurant exposure (family get-together)
 - Unknown number (>20 people)
 - Other patrons (unknown)
 - Press release to notify patrons
- Staff
 - ~5 people

Personal communication. Vaccine Preventable Diseases Division, NJDHSS
Milan to Rhode Island to New Jersey
April 12 – May 13, 2011

- Index case arrived at JFK on 4/12
 - Three NJ residents exposed on flight
- An additional NJ resident exposed on index case arrival
 - Colleague of index case
 - Received MMR as PEP within 24 hours of exposure (4/13)
 - Reported had received MCV in past but no documentation
 - RI DOH notified NJDHSS that contact was symptomatic on 4/25
 - Traveled extensively while infectious within and outside of NJ

Personal communication. Vaccine Preventable Diseases Division, NJDHSS
Contact follow-up

- Secondary case
 - Involved multiple jurisdictions in multiple states
 - Immediate family (3)
 - Family/friends/nanny includes Easter dinner in home (~18)
 - Passengers on multiple flights (~286)
 - Clients (~4)
 - Businesses contacts (~400)
Health Care-Associated Measles Outbreak
Tucson, Arizona, 2008*

- Infected visitor from Switzerland
 - 14 patients with confirmed measles
 - All unvaccinated or unknown status
 - 11 patients accessed health care services while infectious
 - Transmission to 7 patients in a health care facility
 - 1 patient was promptly masked and isolated upon rash onset
 - Health care personnel (HCP) immunity data from 2 hospitals
 - 1776/7195 (25%) lacked evidence of measles immunity
 - 139/1583 (9%) HCPs tested seronegative
 - No computerized HCP employee medical records
 - Cost in 2 hospitals: $799,136.00

The Dilemma

- Measles remains endemic in many parts of the world
 - The world is a village
- Measles is highly contagious
 - Airborne transmission
 - Most contagious prior to presentation of rash
 - Resembles upper respiratory tract infection
- Low index of suspicion in regions where control has been most successful
 - Diagnosis and institution of infection control interventions commonly delayed
- On reintroduction into regions of low endemicity or where elimination has been achieved
 - Serious consequences of disease especially in vulnerable populations
 - Great expense in time and money to public health and medical entities as well as to society as a whole
NJDHSS Recommendations

- Review immunization status of all patients
 - Review status of those with medical or religious exemptions
 - Offer vaccine if appropriate
- Review immunization status of all staff
 - Meet current criteria for proof of immunity
- High index of suspicion
 - Awareness of current situation
 - Careful consideration of patient history
 - Travel history (awareness of outbreaks globally)
 - Exposure history
 - Immunity
NJDHSS Recommendations

- Rigorous adherence to appropriate recommended infection control interventions
 - On suspicion of measles
 - Immediate isolation with airborne precautions in a negative pressure room
 - If hospitalized, remain in airborne isolation through day 4 of rash onset
 - Room used by suspected measles-infected patient should not be used for 2 hours after patient leaves
 - Measles exposure
 - Quarantine from day 5 from first exposure to day 21 after last exposure
 - In general
 - Appropriate triage for patients with respiratory tract symptomology and febrile rashes
 - Surgical masks for coughing patients, particulate respirators for exposed HCP
NJDHSS Recommendations

- Immediate notification of appropriate public health authorities upon suspicion of measles
 - Local Health Department of patient’s residence
 - http://www.state.nj.us/health/lh/index.shtml
 - If unable to reach the local health department contact:
 - NJDHSS at **609-826-5964** (regular business hours)
 - Vaccine Preventable Disease Service at **609-826-4861**
 - **609-392-2020** (holidays/off hours)

- Continued support for measles elimination (and hopefully eventual eradication) programs globally
Resources

- Journal of Infectious Diseases, Volume 189, Supplement 1, May 1, 2004
 - http://jid.oxfordjournals.org/content/189/Supplement_1.toc

- NJDHSS-Vaccine Preventable Disease Program
 - http://www.state.nj.us/health/cd/vpdp/index.shtml

- CDC.
 - http://www.cdc.gov

- WHO.
 - http://www.who.int
Thank You

Questions??

Email:

NewJerseyImmunizationNetwork
@njpcore.org